A Decision Tree System for Finding Genes in DNA

نویسندگان

  • Steven Salzberg
  • Arthur L. Delcher
  • Kenneth H. Fasman
  • John Henderson
چکیده

MORGAN is an integrated system for finding genes in vertebrate DNA sequences. MORGAN uses a variety of techniques to accomplish this task, the most distinctive of which is a decision tree classifier. The decision tree system is combined with new methods for identifying start codons, donor sites, and acceptor sites, and these are brought together in a frame-sensitive dynamic programming algorithm that finds the optimal segmentation of a DNA sequence into coding and noncoding regions (exons and introns). The optimal segmentation is dependent on a separate scoring function that takes a subsequence and assigns to it a score reflecting the probability that the sequence is an exon. The scoring functions in MORGAN are sets of decision trees that are combined to give a probability estimate. Experimental results on a database of 570 vertebrate DNA sequences show that MORGAN has excellent performance by many different measures. On a separate test set, it achieves an overall accuracy of 95 %, with a correlation coefficient of 0.78, and a sensitivity and specificity for coding bases of 83 % and 79%. In addition, MORGAN identifies 58% of coding exons exactly; i.e., both the beginning and end of the coding regions are predicted correctly. This paper describes the MORGAN system, including its decision tree routines and the algorithms for site recognition, and its performance on a benchmark database of vertebrate DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Provide a Predictive Model to Identify People with Diabetes Using the Decision Tree

Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...

متن کامل

Determining Difference in Evolutionary Variation of Bacterial RecA proteins vs 16SrRNA Genes by using 16s_Toxonomy Tree

Background and Aims: The rate of variation in various genes of a bacterial species is different during evolution. Therefore, in systematic bacterial studies many researchers compare the phylogenetic tree of a particular gene to the standard tree of an rRNA gene. Regarding the importance of 16SrRNA gene and the evolutional process of RecA protein family, we investigated the changes in the select...

متن کامل

Development of a Combined System Based on Data Mining and Semantic Web for the Diagnosis of Autism

Introduction: Autism is a nervous system disorder, and since there is no direct diagnosis for it, data mining can help diagnose the disease. Ontology as a backbone of the semantic web, a knowledge database with shareability and reusability, can be a confirmation of the correctness of disease diagnosis systems. This study aimed to provide a system for diagnosing autistic children with a combinat...

متن کامل

Steel Buildings Damage Classification by damage spectrum and Decision Tree Algorithm

Results of damage prediction in buildings can be used as a useful tool for managing and decreasing seismic risk of earthquakes. In this study, damage spectrum and C4.5 decision tree algorithm were utilized for damage prediction in steel buildings during earthquakes. In order to prepare the damage spectrum, steel buildings were modeled as a single-degree-of-freedom (SDOF) system and time-history...

متن کامل

Finding Genes in DNA Using Decision Trees and Dynamic Programming

This study demonstrates the use of decision tree classifiers as the basis for a general gene-finding system. The system uses a dynamic programming algorithm that finds the optimal segmentation of a DNA sequence into coding and non-coding regions (exons and introns). The optimality property is dependent on a separate scoring function that takes a subsequence and assigns to it a score reflecting ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational biology : a journal of computational molecular cell biology

دوره 5 4  شماره 

صفحات  -

تاریخ انتشار 1998